
Demand-driven less-than analysis
Junio Cezar R. da Silva

Universidade Federal de Minas Gerais - UFMG

Avenida Antonio Carlos, 6627

Belo Horizonte, Minas Gerais 31.270-010

juniocezar@dcc.ufmg.br

Fernando Magno Q. Pereira

Universidade Federal de Minas Gerais - UFMG

Avenida Antonio Carlos, 6627

Belo Horizonte, Minas Gerais 31.270-010

fernando@dcc.ufmg.br

ABSTRACT
A less-than analysis is a technique used by compilers to build a

partial ordering between the integer variables in a program. Re-

cently, researchers have shown how to use less-than information

to improve the precision of alias analyses. The literature describes

two techniques to build less-than relations. Both are asymptoti-

cally equivalent to computing a transitive closure in a graph. In

this paper, we depart from this approach, and introduce an algo-

rithm that builds less-than relations on demand. We claim that

such algorithm is more adequate than the current state-of-the-art

approaches, as it performs only the necessary work to satisfy the

needs of its clients, i.e., alias analyses and optimizations that require

less-than information. To validate our idea, we have implemented it

onto the LLVM compilation infrastructure. Depending on the client

analysis, our implementation may lead to runtime savings of up to

68% on large benchmarks, when compared to the more traditional

approach based on the construction of the transitive closure.

KEYWORDS
Less-than Analysis, Compiler, Transitive Closure, Demand-Driven

ACM Reference format:
Junio Cezar R. da Silva and Fernando Magno Q. Pereira. 2017. Demand-

driven less-than analysis. In Proceedings of SBLP 2017, Fortaleza, CE, Brazil,
September 21–22, 2017, 8 pages.

DOI: 10.1145/3125374.3125379

1 INTRODUCTION
Less-than analyses [7, 9] build a partial ordering between the integer

variables used in a program. The ability to conclude that a variable

X is always less than a variableY is useful in several di�erent scenar-

ios, including security analyses and performance optimizations. For

instance, less-than analyses may be used to validate array bounds

checks [2, 7, 8], detect data races in parallel programs [17], improve

runtime performance of applications by removing guards [11] and

disambiguate pointers in imperative programming languages [9].

Less-than analyses serve other analyses and optimizations that

are part of the compiler’s tool box. We call any program pass that

requires less-than information a client of that analysis. Di�erent

clients are not expected to use the less-than analysis in the same

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SBLP 2017, Fortaleza, CE, Brazil
© 2017 ACM. 978-1-4503-5389-2/17/09. . . $15.00

DOI: 10.1145/3125374.3125379

way. For instance, loop optimizers will require ordering informa-

tion between induction variables and loop-invariant code. Restricti-

�ers [1, 18], in turn, shall build relations between pointers. In other

words, each client might query relations between di�erent pairs of

variables. Although obvious, we claim that previous work does not

capitalize on this simple observation. The current implementations

of this service build a complete table of relations between program

variables. This approach, even though correct, is not e�cient, as

we show in Section 2. Ine�ciency, in this case, stems from the fact

that most of the data in the inequality table will not be queried

by an average client. On the other hand, building this table on de-

mand is not a trivial endeavour, as it involves processing partially a

constraint system typically solved via transitive closure [12, Ch.03].

A constraint system is a common way of representing the re-

lationship among variables in the less-than domain [7–9]. The

particular family of constraints used, in this case, can be solved

via the well-known cubic algorithm that builds transitive closures

of graphs. There are e�cient implementations to build transitive

closures, yet, given the size of their output, they are still superlin-

ear [10, 13, 20]. We believe that the transitive closure is an unnec-

essary price that clients must pay to use a less-than analysis. Thus,

our goal is to detach the implementation of a less-than analysis

from the need to build a transitive closure between the integer

variables that exist in a program. Ultimately, this decoupling tends

to increase the performance of our algorithm with regards to the

traditional implementation.

In this paper, we achieve our objective by making the less-than

analysis partially demand-driven. This strategy combines the gen-

eration of constraints by an inspection of the whole program in

a pre-processed stage with less-than information generated on-

demand. With the combination of these two techniques, we are

able to construct relational less-than sets for any variable that is

either used in arithmetic operations or is used to store the result of

such operations. As shown by Maroua et al. [9], a potential use of

these less-than sets is for the disambiguation of pointers. We have

engineered our analysis towards this direction and, as shown in

section 4, we are able to observe runtime improvements in a wide

range of applications.

We have implemented and tested our analysis in LLVM [6], an

industrial quality compilation framework. We have used this frame-

work to evaluate our implementation on more than 20 benchmarks

from the SPEC CPU 2006 test suite [5]. As shown in section 4, our

implementation works by answering true or false to queries in the

form of: Is variable x less than variable y? The Loop Invariant Code
Motion (licm) pass – present in the LLVM compiler – is an example

of a client application that may bene�t from this kind of query.

While working with licm, we were able to reduce by 30% the run-

time of Maroua et al.’s implementation of the less-than analysis. In

some benchmarks such as dealII, gcc and milc this speedup reaches

61%, 117% and 171% respectively. Moreover, we also demonstrate

empirically that the queries performed by licm involve a number

of less-than sets that is substantially lower than the total number

of sets constructed by traditional approaches. This observation in-

dicates that our demand-driven algorithm is more adequate to the

modus operandi of typical compiler optimizations.

2 OVERVIEW
In this section we show how less-than information is used in prac-

tice, and we explain why the current approaches to build less-than

relations still o�er room for improvement.

2.1 Less-Than analysis: usage example
Do pointers A and B refer to the same memory location? This is a

common question that arises while software engineers are reason-

ing about a source code or while compilers are analyzing a program.

Alias analysis is a class of code analyses designed to answer this

kind of question. In the positive case, where the analysis discov-

ers that these two pointers hold references to the same memory

location, they are said to alias. In this section, we shall use pointer

disambiguation to motivate our work.

1 struct S {
2 int acc;
3 int size;
4 int *vet;
5 };
6
7 int fun1(struct S *stt, struct S *stt2) {
8 int i;
9
10 for(i = 0; i < stt->size; i++) {
11 stt->acc += (stt->vet)[i];
12 }
13
14 stt2->acc += (stt2->vet)[stt2->size - 1];
15
16 return stt2->acc + stt->acc;
17 }

Figure 1: An alias analysis, supported by less-than informa-
tion, can disambiguate pointers in the loop inside fun1.

We will use the function illustrated in Figure 1 to demonstrate the

need for alias analysis and how it can be e�ective to generate more

e�cient programs. This example contains a simple routine that

updates the values of accumulators within two structures and, then,

returns the sum of these two variables. A problem with function

fun1 is that it requires four memory accesses, at each iteration

of the loop in line 10, to retrieve the values stored in the struct

members acc, size and vet. Memory accesses are expensive

operations, therefore a way the compiler could optimize that func-

tion is by decreasing the number of these operations executed while

the program is running.

Figure 2 shows an optimized version of the loop seen in Figure 1.

This code only performs four memory accesses, for all possible itera-

tions of the loop, to load or store the same values from the members

of struct stt. Figure 2 is the result of a well-known code optimiza-

tion: loop invariant code motion. However, compilers may only apply

it when they know that the memory locations accessed to fetch

1 int tmp1 = stt->size;
2 int tmp2 = stt->acc;
3 int *tmp3 = stt->vet;
4 for (i = 0; i < tmp1; i++) {
5 tmp2 += tmp3[i];
6 }
7 stt->acc = tmp2;

Figure 2: Loop present in line 10 of Figure 1, after loop in-
variant code motion (licm) was applied by the compiler.

those values are pairwise di�erent. In this example, if the memory

locations dereferenced to retrieve the values of stt->acc and

stt->size were the same, the compiler would not be able to

generate the code of Figure 2, because at each iteration of the loop

the value of stt->size might change, which would lead the

loops from the two �gures to generate di�erent results.

In programming languages that support pointer arithmetics, such

as C and C++, less-than analyses have been shown to be e�ective

to disambiguate pointers [9]. Basically, in this case we say that two

pointers, p1 and p2, do not alias if the address referenced by p1 is

strictly less than the address referenced by p2. In Figure 1, a less-

than relations based alias analysis would be able to distinguish the

memory locations accessed in the loop present in line 10, enabling

the generation of the optimized code illustrated in Figure 2. A less-

than analysis can di�erentiate the two �elds of the struct because

the memory addresses of these members are obtained by the sum of

the struct’s base pointer plus an o�set that is known at compilation

time. As a result, once the compiler knows which values correspond

to these o�sets, it may de�ne if the pointers are accessing or not

the same memory location. Figure 3 shows how the compiler would

extract the o�sets. The �gure shows the loop of Figure 1 in LLVM’s

assembly. The dashed arrows indicate where the pointer’s address is

for.cond:
 %i.0 = phi i32 [0, %entry], [%inc, %for.inc]
 %size = getelementptr inbounds %struct.S, %struct.S* %stt, i32 0, i32 1
 %tmp = load i32, i32* %size, align 4
 %cmp = icmp slt i32 %i.0, %tmp
 br i1 %cmp, label %for.body, label %for.end

TRUE FALSE

for.body:
 %vSSA_sigma = phi i32 [%i.0, %for.cond]
 %idxprom = sext i32 %vSSA_sigma to i64
 %vet = getelementptr inbounds %struct.S, %struct.S* %stt, i32 0, i32 2
 %tmp1 = load i32*, i32** %vet, align 8
 %arrayidx = getelementptr inbounds i32, i32* %tmp1, i64 %idxprom
 %tmp2 = load i32, i32* %arrayidx, align 4
 %acc = getelementptr inbounds %struct.S, %struct.S* %stt, i32 0, i32 0
 %tmp3 = load i32, i32* %acc, align 4
 %add = add nsw i32 %tmp3, %tmp2
 store i32 %add, i32* %acc, align 4
 br label %for.inc

for(i = 0; i < stt->size; i++) {
 stt->acc += (stt->vet)[i];
}

for.inc

for.end

entry,point

Figure 3: The intermediate representation of the loop in Fig-
ure 1. Less-than relations disambiguate struct �elds.

2

being calculated. The special instruction getelementptr is used to

perform the sum of the struct’s base pointer %struct.S %stt
and the o�set, which is 0 for the member acc, 1 for size and 2 for

vet. Using this information, the less-than analysis is able to create

inequalities out of these operations and distinguish these pointers.

2.2 The Shortcomings with Transitive Closures
The work of Maroua et. al. [9] presents the most up-to-date employ-

ment of less-than relations to answer alias queries. They provided

a snapshot of the potential of such analysis – showing the bene�ts

in precision when compared to previous analyses. But one of the

problems faced by their approach is that it consumes an elevated

amount of time to build less-than relations. Most of this drawback

is due to the fact that Maroua et al. create a transitive closure of a

graph that has one vertex per integer variable in a program. For

large programs, this graph might have thousands of nodes, and

computing a transitive closure is well-known to have an O(V 3
)

time complexity. A transitive closure is a structure that explicitly

speci�es all possible direct paths within a graph. In other words, a

transitive closure of a directed graph G is de�ned as a second graph

G’ = (V, E’), where V is the set of vertices of G and E’ is the set of

edges (ni ,nj) that shows that there is a path between the nodes ni
and nj in G. Figure 4 shows the closure that represents the function

fun1, seen in Figure 1. Figure 4 (a) shows the component built out

of the less-than relations extracted from the loop in line 10 and

(b) shows the component of the closure produced by the relations

extracted from operations in line 14.

The transitive closure might lead to unnecessary computations,

as it does not consider speci�c needs of the client that requests less-

than information. For instance, two of the connected components

of the closure seen in Figure 4 (involving variables i_fbody and

stt2) do not contribute towards the generation of the optimized

loop of Figure 2. Therefore, these two components would not be

necessary to carry out that optimization. This problem is even more

evident if we consider a secondary function, that does not have any

relation with fun1. Figure 5 illustrates this case. The function pre-

sented in this Figure (fun2) will provide more variables, that must

still be accounted for in the transitive closure, even though fun2
does not bear impact in the optimization performed in Figure 2.

stt
stt.acc

stt.vet
stt.size

stt2
stt2.acc

stt2.vet
stt2.size

(a) (b)

i_fbody

stt.size.value

Figure 4: Transitive closure representing the less-than rela-
tions extracted from the function fun1 in Figure 1. Arrows
indicate ordering. A variable that is the source of an arrow
has its value less than the target one. The nodes i_fbody and
s�.size.value represent, respectively, the values of the vari-
able i inside the for loop and the struct member size. All the
other nodes represent pointers to struct members.

B

num2_else B_else

num2_then

num1

B_then

A

(a) (b)

1 int fun2(int num1, int num2) {
2 int A = num1 + 1;
3 int B = A + 1;
4 if (B > num2) {
5 A += num2;
6 B - = num1;
7 } else {
8 A = num1;
9 B = num2;
10 }
11 return A + B;
12 }

num2

Figure 5: Sample function (a) that would have its transitive
closure (b) calculated by the approach used by Maroua et.
al. [9], even though the creation of this closure does not
a�ect the result obtained in Figure 2. As nodes A, A_then
and A_else connect to the same arrows, we decided to merge
them into the same node A in the graph of letter (b).

In an e�ort to demonstrate that this problem indeed happens

with real applications, we have analyzed the behavior of Maroua et
al.’s analysis on the benchmark dealII from SPEC CPU 2006 [5]. We

consider, in this experiment, queries performed by LLVM’s licm and

instcombine implementations. The results of this study, illustrated

in Figure 6, show that the transitive closure approach produces

much more information than client optimizations require. While

answering alias queries from the licm pass, Maroua et al. produced

3.67 times more less-than sets than the client analysis demanded.

For the instcombine pass – an optimization that tries to combine

redundant instructions – this di�erence between consulted and

constructed less-than sets increased to 15.36 times. These sets are

the standard way to organize less-than information. They associate

a variable v with other variables x , such that x < v . For example,

the less-than set of variable B_then, in Figure 5 (b), contains all

variables that have their values less than B_then: num2_then, num1,
and A. Some of these variables, such as B_then, are not explicitly

present within the body of function fun2. They appear in the

intermediate representation that LLVM produces for that function.

Our technique is able to answer the same alias queries, while

performing fewer calculations. Instead of calculating a full transitive

licm instcombine
0

20000

40000

60000

licm instcombine
0

5000

10000

15000

a

(a) (b)

Figure 6: Result of generating less-than sets using a fully
pre-processed approach (a) and a demand-driven approach
(b) for two client analyses. Dark bars represent the number
of less-than sets consulted by the client analyses. Light-gray
bars represent the less-than sets constructed in order to an-
swer the alias queries.

3

Abstract
representation

Inspect code
Extract

constraints

Build implicit
constraint graph

Identify regions

Select
constraints

Propagate
information

Answer query

Constraint generation

Regions identification

Local solving

Receive alias query
from client analyses

Figure 7: Steps adopted by our less-than relations based
demand-driven alias analysis. White rounded boxes repre-
sent our pre-processed stage, while the grey squared boxes
show the stage we move into on-demand.

closure beforehand, we have embraced a demand-driven approach

which allows us to generate specialized less-than information for

each source of alias queries. As already shown in Figure 6, we

can reduce the number of less-than sets calculated in di�erent

optimizations. This happens because the alias queries generated by

the clients licm and instcombine involve only a subset of the integer

variables present in the target program. This observation is not

exclusive to these two optimizations; rather, it characterizes all the

optimizations available in LLVM that we have studied. Furthermore,

intuition lets us extrapolate this observation to other compilers.

This behavior favours an on-demand approach to build less-than

relations. Note that, in order to answer the queries performed by

licm, our technique needed to calculate a lower number of less-

than sets than the number required by that optimization. This

behavior is due to the use of region identi�ers, as will be introduced

in section 3.2. This identi�cation system allows us to answer queries

without having to pay the cost of calculating any less-than set. From

now on, we shall use the notation LT to refer to a generic less-than

set and LT(x) to refer to the less-than set owned by variable x.

3 DEMAND-DRIVEN STRATEGY
In this section we shall describe the main steps of our partial less-

than demand-driven analysis: (1) constraint generation, (2) regions

identi�cation, and (3) local solving. The work�ow for these stages

is illustrated in Figure 7. At the end of this process, we solve a

less-than analysis, which we de�ne as follows:

De�nition 1 (Less-Than Analysis). A less-than analysis is a static

program analysis that computes, for each variable x , its less-than

set LT (x) = {x1, . . . ,xn }. If xi ∈ LT (x), then we have that xi < x , at

every program point where these two variables are alive together.

De�nition 1 describes a Sparse Analysis. In compiler theory, there

are two ways to implement a data-�ow analysis; one using a Dense
and another using a Sparse approach. The dense analysis tries to

bind information to pairs, each containing a program point and a

variable name. On the other hand, a sparse analysis binds informa-

tion directly to variables. We make use of a sparse representation

over a dense one because of two main reasons. First, it simpli�es

our strategy: it is easier to associate information with a variable

name, instead of having to keep track of the di�erent abstract states

that a variable may assume along the program’s text. Second, it has

been shown that sparse analyses tend to be faster and require less

memory than their dense counterparts [3, 14, 15, 19].

Sparse analyses are able to associate information to variables

because they run on an abstract program representation that in-

corporates the Static Single Information (SSI) property. In summary,

this property de�nes that an abstract state associated with a vari-

able must be invariant along all program points where this variable

is alive [19]. To ensure this property, the abstract representation

used by our analysis resorts to live range splitting. To split the live

range of a variable x , at a program point p, we insert a copy x ′ = x
in p, where x ′ is a fresh name in the program. Then, we rename

every use of x at any point p′ that is dominated by p to x ′.
Di�erent static analyses use di�erent live range splitting strate-

gies to enforce sparsity. The less-than analysis splits live ranges at

three di�erent kinds of program sites: de�nition points, conditional

statements and merging points. The �rst situation lets us extract

less-than information from copy assignments and arithmetic oper-

ations. The second allows us to extract less-than information from

conditionals. Merging points let us extract or re�ne information in

program points where di�erent information may collide.

Example 3.1. Consider the program in Figure 5. We know that

num2 is less than B, at line 5, because the conditional in line 4 must

be true at line 5. Similarly, we know that num2 cannot be less than B
in line 8. Thus, to ensure that the less-than information is invariant

for every variable, we need to rename num2 and B at lines 5 and 8.

Each new name will be bound to a new set of less-than facts. For

instance, assuming that the new name of those variables, at line 5,

is num2_then and B_then, we have that num2_then ∈ LT (B_then).

The computation of less-than facts depends on a range analysis.

We de�ne range analysis as follows:

De�nition 2 (Range Analysis). For any program variable x , Range

Analysis estimates lower and upper values that bound this variable.

Range information is given by R (x) = [l ,u], {l ,u} ⊂ Z,l < u.

To keep this paper as short as possible we do not go any further in

explaining the basis on how range analysis works. This background

information is presented by Rodrigues et al. [16], who are also the

authors of the implementation we use. Thus, henceforth, we shall

assume that the implementation of our less-than analysis can count

on the existence of a mapping R from variables to their ranges.

3.1 Constraint generation
Following Maroua et. al.’s approach, we begin our analysis with

a constraint generation step. In this stage, we inspect the whole

program once, and generate four kinds of constraints: init, copy,
union and intersect. The process of traversing the program to

mine constraints is linear on the size of the program. These con-

straints are extracted from �ve di�erent syntactic constructions:

1 - Assignments from constants or unknown sources: Instruc-

tions such as x1 = c and x1 = •, whereas c ⊂ Z and • represent a

source of unknown values, e.g., user input, generate an init con-

straint:

x1 = • | x1 = c { LT (x1) = ∅

2 - Assignments from variables: For example, x1 = y1 leads to

a copy, copy(x1, y1), constraint:

4

LT (x1) = LT (y1)

3 - Assignments from arithmetic operations: To handle this

kind of assignment, e.g., x1 = y1 + z1, our analysis needs a bit of

extra information – it needs knowledge about integer ranges. As

described in de�nition 2, range analysis de�nes integer intervals

that restrict the values assumed by variables. Continuing with the

example above, if we �nd out that the interval that bounds z1
contains only positive elements, the condition y1 < x1 will be true,

which leads to an union, union(x1, y1), constraint:

LT (x1) = LT (y1) ∪ {y1}

On the other hand, if the interval associated to z1 contains only

negative elements, the condition x1 < y1 will be true, leading to

the reordered union , union(y1, x1), constraint.

4 - Conditional statements: This kind of statement, e.g., (x1 <
x2)?, leads to the creation of both union and copy constraints:

(x1 < x2)?

Tbranch : 〈x1t ,x2t 〉

Fbranch : 〈x
1f ,x2f 〉

{

LT (x2t) = {x1t } ∪

LT (x2) ∪ LT (x1t)

LT (x1t) = LT (x1)

LT (x
2f) = LT (x2)

LT (x
1f) =

LT (x1) ∪ LT (x2f)

In this case, we split the live range of variables x1 and x2 right

after the conditional statement. Inside the true branch (Tbranch),

we rede�ne variables x1 to x1t and x2 to x2t . Likewise, we rede�ne

x1 to x
1f and x2 to x

2f in the false branch (Fbranch).

5 - Merging points: these points are syntactically represented

with ϕ-functions, a notation borrowed from the classic Static Sin-

gle Assignment form [4]. For example, the �rst instruction in the

for.cond block of Figure 3 is a merging point for the variable i
{ i .0 = ϕ (0,inc). Merging points result in intersect constraints:

x = ϕ (x1, . . . ,xn) { LT (x) = LT (x1) ∩ . . . ∩ LT (xn)

This kind of constraint is also used to allow the analysis to work

inter-procedurally, albeit not context-sensitively, by creating pseudo-

instructions in the form of xf = ϕ (x1, ...,xn). These instructions

relate a formal parameter xf to each actual parameter xi , 1 ≤ i ≤ n,

found in the text of the program.

Example 3.2. Figure 8 contains a graph representation of the func-

tion fun2 of Figure 5. This graph already shows variables with split

live ranges. From this graph our analysis extracts the following con-

straints: LT (A0) = LT (num10)∪ {num10}; LT (B0) = LT (A0)∪ {A0};

LT (B
0f) = LT (B0); LT (B0t) = LT (B0) ∪ LT (num20t) ∪ {num20t }

; LT (num20t) = LT (num20); LT (B0f) = LT (B0); LT (num2
0f) =

LT (num20) ∪ LT (B
0f); LT (A1) = LT (B1t) = unde f ; LT (A2) =

LT (num10); LT (B1f) = LT (num2
0f); LT (A3) = LT (A1) ∩ LT (A2);

LT (B2) = LT (B1t) ∩ LT (B1f).

3.2 Region identi�cation
To speedup the propagation of less-than information, we intro-

duce the notion of region identi�cation. With this goal, we de�ne

Constraint Graphs as follows:

A0 = num10 + 1

B0 = A0 + 1

B0 > num20 ?

B0t = B0
num20t = num20

B0f = B0
num20f = num20

true

false

A1 = A0 + num20t
B1t = B0t + num10

A2 = num10
B1f = num20f

A3 = φ(A1, A2)
B2 = φ(B1t, B1f)

ret A3 + B2

Figure 8: Graph representing the control �ow of function
fun2 present in Figure 5.

De�nition 3 (Constraint Graph). A constraint graph is a graph G

= (N,P,E,X), where N is a set of nodes, composed by variables in the

constraint system. P is a set of special nodes, named ϕ nodes, E is a

set of edges and X is a set of special edges, which we call ϕ edges.

We have two kind of edges that may connect variables u to v: (1)

an equality edge that derives from copy or union constraints that

only involves LT sets; or (2) a less-than edge, which derives from

union constraints involving both LT sets and single variables. The

ϕ edges derive from intersect constraints and connect the variables

in the right hand side of the constraint to a ϕ node and link this

special node to the variable in the left hand side. Henceforth, we

shall call connected components in the constraint graph regions.

Regions give us the opportunity to answer some less-than queries

immediately, without having to traverse the constraint graph. We let

id (y) imply the region id associated to the variable y. Based on this

notation, region identi�cation works as follows: if two variables

– x and y – are inside the same region and, consequently, have

id (x) = id (y), then there is the possibility of either x ∈ LT (y) or

y ∈ LT (x). To verify if one of these conditions is valid, we propagate

information through our constraint solving step (Section 3.3). Note

that this technique does not allow us to assert beforehand that

x ∈ LT (y) or y ∈ LT (x). On the other hand, if these two variables

are enclosed by regions with di�erent ids, then we guarantee that

x < LT (y) and y < LT (x). This last observation helps us to speed

up our analysis due to the fact that we avoid propagating less-than

information. As we will see in section 4, information propagation

is the step with the highest execution cost, since it is based on a

worklist algorithm and computes transitive closures.

Example 3.3. Figure 9 contains the constraint graph for fun1
and fun2, from Figures 1 and 5. Regions are marked in grey in the

stt.acc
stt

stt2.acc

stt2

tmpsub

stt2.size

stt.size

i.0

0 inc

φ

stt.vet

stt2.size

stt2.vet

i.1

A3

φ φ

A1 A2

B2

B1t

B0f
num10

A0 B0

num20t

B0t

num20

num20f

B1f

B2

Figure 9: Regions for a program containing both functions
fun1 and fun2 from �gures 1 and 5. Each grey area corre-
sponds to a region with an unique id.

5

constraint (x1,y1),e .д.,union(x1,y1) or copy (x1,y1)

case 1 :

id (x1) = ∅

id (x2) , ∅
{ id (x1) = id (x2)

case 2 :

id (x1) , ∅

id (x2) = ∅
{ id (x2) = id (x1)

case 3 :

id (x1) = ∅

id (x2) = ∅
{

id = new id

id (x2) = id (x1) = id

case 4 :

id (x1) , ∅

id (x2) , ∅
{ unify (id (x2), id (x1))

Figure 10: Rules for associating variables to regions. If two
variables belonging to regions with di�erent IDs are found
to be related, then we unify those regions. In a nutshell, this
operation maps the two di�erent IDs to a same common
region, which we call a super-region. Figure 9 only shows
super-regions. These rules are also valid for the intersect
constraint, which may relate more than two variables.

�gure. Dashed arrows represent equality edges and solid arrows

represent less-than edges.

Theorem 3.4 (Inclusion Condition). A variable x is member of
the set LT(y), if, and only if there is a directed path in the constraint
graph departing from x leading to y, and this path goes across at least
one less-than edge. Furthermore, if this path crosses a ϕ node, there
must be paths departing from x and reaching such ϕ node from every
incoming ϕ edge.

Proof: Necessity: if there is a directed path from x
to y , and this path goes across at least one less-than

edge, then there must exist an union constraint relat-

ing x to y or any other nodes in between these two

extremes. Su�ciency: the proof works by induction.

On the base case, we have a less-than edge linking x
to y . By case analysis on the constraint rules, there

must exist a constraint such as LT (y) = LT (x)∪ {x }.
Extension: constraints created by ϕ-functions force

intersections of abstract information. �

Theorem 3.4 gives us Corollary 3.5. This corollary, in turn, lets

us speedup the process to answer less-than queries.

Corollary 3.5. id (x) , id (y) → x < LT (y) ∧ y < LT (x)

For the sake of simplicity, Figure 7 separates region identi�cation

and constraint generation. However, these processes take place

simultaneously and, as mentioned in the same �gure, the constraint

graph is implicit in our problem representation. Immediately after

a constraint is extracted from the program, its variables are either

inserted into an already existing region or in a new one created

for them. The rules for binding variables to regions are illustrated

in Figure 10. Notice that the nature of each constraint does not

interfere in this process: the sole purpose of constraints in this

stage is to establish connections among variables.

3.3 Lazy calculation
As Figure 7 indicates, we propagate information Lazily, in a pro-

cess we identify as local solving. Our analysis waits until client

applications perform alias queries, requesting information about

LT sets of pointers, in order to construct such sets. We propagate

information through a worklist algorithm. Each variable x of the

target region has its LT set initialized to V , the set of variables

assigned to the region id (x). The worklist algorithm, then, starts

to iterate over a speci�c constraint set trying to remove elements

from each one of them, until a �xed point is reached. Maroua et
al have shown that a �xed point is indeed reached while infor-

mation is being propagated [9, Sec. 3.5]. The speci�c constraint

set, mentioned before, is composed by two kinds of constraints:

those directly related to the pointer for which LT information is

being required, and those related to a source of LT information

encapsulated by the same region. The fact that we only propagate

information when the target variables are within the same region,

and only try to select subsets of constraints from said region, is the

major reason we could achieve better runtime for our analysis, as

we will demonstrate in the next section.

4 EVALUATION
In this section, we answer the following research questions:

RQ1: What is the bene�t in runtime provided by the demand-

driven approach presented in this paper?

RQ2: Is there any case in which our technique leads to worse

results than a closure-based traditional implementation?

RQ3: How do we compare, in terms of precision, against the

closure-based approach?

RQ4: How does our approach compare, in terms of memory

consumption, against the closure-based approach?

To provide answers to these questions, we have implemented

our analysis in LLVM version 3.7, and have compared it against

the implementation of Maroua et al. [9], available in the ACM

digital library as an artifact submitted to the CGO artifact evaluation

committee. Our hardware consists of a quad-core Intel(R) i7-3770

at 3.4 GHz, with 16GB of RAM, featuring Linux Ubuntu 14.04.

Our benchmarks are the 20 C/C++ programs taken from the

SPECCPU 2006 suite. This collection contains a range of real world

applications such as libraries for video processing, error estima-

tion, compilers and interpreters of programming languages. We

have selected three di�erent client analyses present in LLVM to

demonstrate how our demand driven approach works alongside

individual code optimizations. The �rst client analysis is Loop in-
variant code motion. This optimization moves unnecessary code

outside a loop whenever possible. The second client, Combination
of redundant instructions, is a code transformation that reduces the

amount of instructions of a given program by re-combining them

into fewer, simple instructions. The last client, Dead store elimina-
tion, eliminates redundant store operations. Following the LLVM

nomenclature, we shall use the abbreviations licm, instcombine and

dse to identify each client.

6

0	

1	

2	

3	

4	

5	

as
ta
r	

bw
av
es
	

bz
ip
2	

de
al
II	

gc
c	

go
bm

k	

h2
64
re
f	

hm
m
er
	

lb
m
	

lib
qu

an
tu
m
	

m
cf
	

m
ilc
	

na
m
d	

om
ne

tp
p	

pe
rlb

en
ch
	

po
vr
ay
	

sje
ng
	

so
pl
ex
	

sp
hi
nx
	

Xa
la
n	

licm	
instcombine	
dse	
licm	+	instcombine	+	dse	

Figure 11: Runtime improvement obtained with our
demand-driven analysis, while handling queries from the
licm, instcombine and dse passes. The line identi�ed by
the number 1 is a baseline that indicates the runtime of the
traditional worklist solver. Values above this line indicate a
better runtime performance of our algorithm.

4.1 Discussion of Results
RQ1: Figure 11 illustrates the runtime results for each benchmark

in our test-suite. For the optimizations licm, instcombine, and dse
we were able to reach average runtime improvements of 30%, 48%,

and 27% respectively, over the implementation of Maroua et al [9].

For the largest benchmarks in size: dealII, gcc and Xalan, runtime

savings reached up to 68%. We have also analyzed the impact of

such optimizations running together, and we observed an average

performance gain of 51%. This perceived improvement is due to two

reasons. First, these optimizations request LT information of few

pointers when compared to the whole universe of possible requests.

For example, licm makes queries related to pointers that are either

within loops or correlated with instructions inside those loops. This

set represents only 10% of the queries that could be performed over

our benchmarks set. Likewise, instcombine only queries pointers

in instructions with potential to be combined. In this case, queries

represent only 4% of the universe of possible inquiries. The more

LT sets are consulted, the more computations we are expected to

perform. The second reason for our better performance is the fact

that constraint solving is the most time consuming phase of the

less-than analysis. For each code optimization present in LLVM,

the process of constraint solving consumed at least 54% of the total

time in general benchmarks and up to 85% for the largest one. This

stage is exactly the one that our on-demand technique improves.

RQ2: The time consumed to run a less-than analysis may be di-

vided into four stages: (1) constraint generation, (2) dependence

graph construction, (3) constraint solving, and (4) query answering
1
.

For the cases where constraint solving does not have the highest

impact in the analysis runtime, our algorithm is not able to pro-

vide considerable improvement upon the closure-based approach.

As an example, we consider the Alias Analysis Precision Evalua-

tor, aa-eval, present in the LLVM. This client, as its name implies,

evaluates the precision of di�erent alias analysis algorithms, by

trying to disambiguate every pair of pointers in a program. When

serving this client, the most time consuming stage of the less-than

analysis is query answering, as outlined in Figure 12. In this case,

1
To keep this paper as short as possible, we decided to omit any reference to the

dependence graph created by our approach. This structure is also created by Maroua

et. al. and both are equivalent in implementation and runtime.

10%	

5%	

22%	

63%	

Constraint Solving Dependence Graph Creation
Constraint Generation Query Answering

(a) (b)

32%

12%

1%

55%
63%

22%

10%
5%

Figure 12: Time consumption distributed among the stages
of the less-than analysis. (a) shows the result for licm, dse,
and instcombine and (b) for aa-eval.

our demand-driven technique achieved a general improvement of

only 9% over the more traditional approach. For some benchmarks,

such as Xalan and mcf, our technique led to slowdowns of 2% and

4%, with a maximum observed value of 16% in the omnetpp bench-

mark. Such regressions are due to the overhead of checking that

two pointers are not grouped in the same connected region of the

constraint graph. This overhead has not surfaced for the compiler

optimizations that we have evaluated; however, aa-eval makes it

evident, because it queries every possible combination of pointers

within a function.

RQ3: As our demand-driven algorithm only uses a subset of con-

straints within a speci�c region to propagate information, one may

think that our technique could be less precise than Maroua et al.’s.

However, the fact that we use constraints that represent sources

of LT information to feed our worklist solver gives us the same

results as those obtained with the traditional approach. We preserve

precision because less-than facts are propagated to every reach-

able variable in the constraint graph. We say that two pointers

do not alias only if there is a directed path between them in the

constraint graph. Under these circumstances, Theorem 3.4 already

ensures that we preserve less-than information. We have empiri-

cally checked the results from ours and Maroua’s implementation,

and, as expected, they provide the same answers to alias queries

for every combination of benchmark and clients. Furthermore, the

binaries that LLVM produced for SPECCPU 2006 were identical,

regardless of which implementation of the less-than analysis we

have used.

0	
0.5	
1	

1.5	

as
ta
r	

bw
av
es
	

bz
ip
2	

de
al
II	

gc
c	

go
bm

k	
h2

64
re
f	

hm
m
er
	

lb
m
	

lib
qu

an
t

m
cf
	

m
ilc
	

na
m
d	

om
ne

tp
pe

rlb
en

c
po

vr
ay
	

sje
ng
	

so
pl
ex
	

sp
hi
nx
	

Xa
la
n	

Figure 13: Overhead in memory usage imposed by our
demand-driven technique

7

RQ4: In general, our demand-driven technique increases memory

consumption when compared with the closure-based approach.

Figure 13 shows this increase. On average, we use 9% more memory

than Maroua et al.’s implementation. We use more memory mainly

because we need a separate data-structure to group constraints in

di�erent regions.

5 RELATEDWORKS
Over the years, many di�erent static analyses have used the less-

than domain to demonstrate the relationship between the variables

of a program. With this purpose, Logozzo et. al. [7] have introduced

Pentagons, a relational abstract domain that includes a mix of the

less-than analysis with integer range of variables. Their domain is

very similar to the one we have used in this paper and can be used

as well to infer less-than information like we do. Nevertheless, their

approach di�ers from ours, because while we split our algorithm in

two stages – pre-processing and querying – they adopt an approach

based on the construction of a transitive closure.

Bodik et. al. [2] use a strategy that shares some similarities with

ours. They also try to solve less-than relations through a demand-

driven algorithm. But, di�erently from our approach, they use a

graph interpretation in order to express the less-than relations

among variables. Their analysis also di�ers from ours in terms of

performing a LT check. While we say that a variable x is less than y
if x ⊂ LT (y), they answer positive to a check if there exists a path,

ideally the shortest, between a source node s and a target node t in

their graph. They try to �nd this path by means of a brute-force

depth-�rst exploration of the graph. Another di�erence between

our approach and theirs it that we make use of range information

to improve the accuracy of our analysis.

The work developed by Maroua et. al. [9] is the one closest to

ours. We share with them all the fundamental steps of creating

and solving less-than relations through a worklist algorithm. The

di�erences between their work and ours are the contributions we

have presented in section 3. In their original approach, they create

less- than constraints, solve them one-by-one and then store the

information generated, so as to answer queries from other anal-

yses in O (1). We have modi�ed the step that creates constraints,

and have moved the whole resolution step to a demand-driven

approach. During constraint creation, we also include a process

to generate Region identi�ers, which we use to prune our iteration

space. We only start the constraint solving step if we identify that

a client analysis requires it. We emphasize that these di�erences

are not simply due to engineering decisions. To solve constraints

on demand, we had to extract structure from them, i.e., we had

to model the constraint system as a constraint graph, and then

de�ne regions in a pre-processing phase. This pre-processing lets

us avoid checking variables that could not be related by less-than

information in our constraint system.

6 CONCLUSION
This paper has presented a new strategy, based on a partially

demand-driven approach, that is able to solve inequalities of a less-

than constraint system. The approach is said to be partially demand-

driven, because it combines a pre-processing stage, which generate

constraints, with a querying stage, which works on-demand and

is responsible for solving constraints. We have used our less-than

analysis to disambiguate pointers, following the technique intro-

duced by Maroua et al. [9]. Our experimental results lead us to

believe that this approach is e�ective and useful, when compared to

the current state-of-the-art implementations of less-than analyses.

We speculate that our ideas could bene�t other static analyses as

well. There are several di�erent static analyses, such as alias anal-

ysis, and rapid type analysis, which compare information about

pairs of elements. We believe that the idea of grouping constraints

into di�erent regions could be used to speed them up. For example,

optimizations that could be solved in a potentially more e�cient

way, given these ideas, include elimination of array bound checks

and detection of data races in parallel programs. We leave these

possibilities as work that we hope to explore in the future.

REFERENCES
[1] Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias

Grosser, Fabrice Rastello, and Fernando Magno Quintão Pereira. 2015. Runtime

Pointer Disambiguation. In OOPSLA. ACM, New York, NY, USA, 589–606.

[2] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD: eliminating array

bounds checks on demand. In PLDI. ACM, New York, NY, USA, 321–333.

[3] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. 1991. Automatic Construction

of Sparse Data Flow Evaluation Graphs. In POPL. ACM, New York, NY, USA,

55–66.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. 1989. An E�cient Method of Computing Static Single Assignment Form.

In POPL. ACM, New York, NY, USA, 25–35.

[5] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[6] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In CGO. IEEE, Washington, DC,

USA, 75–.

[7] Francesco Logozzo and Manuel Fähndrich. 2008. Pentagons: A Weakly Relational

Abstract Domain for the E�cient Validation of Array Accesses. In SAC. ACM,

New York, NY, USA, 184–188.

[8] Francesco Logozzo and Manuel Fähndrich. 2010. Pentagons: A Weakly Relational

Abstract Domain for the E�cient Validation of Array Accesses. Sci. Comput.
Program. 75 (2010), 796–807.

[9] Maroua Maalej, Vitor Paisante, Pedro Ramos, Laure Gonnord, and Fernando

Magno Quintão Pereira. 2017. Pointer Disambiguation via Strict Inequalities. In

CGO. IEEE, Piscataway, NJ, USA, 134–147.

[10] Ian Munro. 1971. E�cient determination of the transitive closure of a directed

graph. Inform. Process. Lett. 1, 2 (1971), 56–58.

[11] Henrique Nazaré, Izabela Ma�ra, Willer Santos, Leonardo Barbosa, Laure

Gonnord, and Fernando Magno Quintão Pereira. 2014. Validation of Memory

Accesses Through Symbolic Analyses. In OOPSLA. ACM, New York, NY, USA,

791–809.

[12] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 2005. Principles of
program analysis. Springer, New York, NY, USA.

[13] Gerald Penn. 2006. E�cient transitive closure of sparse matrices over closed

semirings. Theoretical Computer Science 354, 1 (2006), 72–81.

[14] G. Ramalingam. 2002. On Sparse Evaluation Representations. Theor. Comput.
Sci. (2002), 119–147.

[15] Andrei Rimsa, Marcelo d’Amorim, and Fernando Magno Quintão Pereira. 2011.

Tainted Flow Analysis on e-SSA-form Programs. In CC/ETAPS. Springer-Verlag,

Berlin, Heidelberg, 124–143.

[16] Raphael Ernani Rodrigues, Fernando Magno Quintao Pereira, and Victor Hugo

Sperle Campos. 2013. A Fast and Low-overhead Technique to Secure Programs

Against Integer Over�ows. In CGO. IEEE, Washington, DC, USA, 1–11.

[17] Radu Rugina and Martin Rinard. 2000. Symbolic Bounds Analysis of Pointers,

Array Indices, and Accessed Memory Regions. In PLDI. ACM, New York, NY,

USA, 182–195.

[18] Victor Hugo Sperle Campos, Péricles Rafael Alves, Henrique Nazaré Santos, and

Fernando Magno Quintão Pereira. 2016. Restricti�cation of Function Arguments.

In CC. ACM, New York, NY, USA, 163–173.

[19] André Tavares, Benoit Boissinot, Fernando Pereira, and Fabrice Rastello. 2014.

Parameterized construction of program representations for sparse data�ow anal-

yses. In CC. Springer, Grenoble, France, 18–39.

[20] B-F Wang and G-H Chen. 1990. Constant time algorithms for the transitive

closure and some related graph problems on processor arrays with recon�gurable

bus systems. IEEE Transactions on Parallel and Distributed Systems 1, 4 (1990),

500–507.

8

	Abstract
	1 Introduction
	2 Overview
	2.1 Less-Than analysis: usage example
	2.2 The Shortcomings with Transitive Closures

	3 Demand-driven strategy
	3.1 Constraint generation
	3.2 Region identification
	3.3 Lazy calculation

	4 Evaluation
	4.1 Discussion of Results

	5 Related Works
	6 Conclusion
	References

